ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.13353
36
140

CacheOut: Leaking Data on Intel CPUs via Cache Evictions

23 June 2020
S. V. Schaik
Marina Minkin
Andrew Kwong
Daniel Genkin
Y. Yarom
ArXivPDFHTML
Abstract

Recent transient-execution attacks, such as RIDL, Fallout, and ZombieLoad, demonstrated that attackers can leak information while it transits through microarchitectural buffers. Named Microarchitectural Data Sampling (MDS) by Intel, these attacks are likened to "drinking from the firehose", as the attacker has little control over what data is observed and from what origin. Unable to prevent the buffers from leaking, Intel issued countermeasures via microcode updates that overwrite the buffers when the CPU changes security domains. In this work we present CacheOut, a new microarchitectural attack that is capable of bypassing Intel's buffer overwrite countermeasures. We observe that as data is being evicted from the CPU's L1 cache, it is often transferred back to the leaky CPU buffers where it can be recovered by the attacker. CacheOut improves over previous MDS attacks by allowing the attacker to choose which data to leak from the CPU's L1 cache, as well as which part of a cache line to leak. We demonstrate that CacheOut can leak information across multiple security boundaries, including those between processes, virtual machines, user and kernel space, and from SGX enclaves.

View on arXiv
Comments on this paper