ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.13297
6
12

Learning Potentials of Quantum Systems using Deep Neural Networks

23 June 2020
Arijit Sehanobish
H. Corzo
Onur Kara
David van Dijk
ArXivPDFHTML
Abstract

Attempts to apply Neural Networks (NN) to a wide range of research problems have been ubiquitous and plentiful in recent literature. Particularly, the use of deep NNs for understanding complex physical and chemical phenomena has opened a new niche of science where the analysis tools from Machine Learning (ML) are combined with the computational concepts of the natural sciences. Reports from this unification of ML have presented evidence that NNs can learn classical Hamiltonian mechanics. This application of NNs to classical physics and its results motivate the following question: Can NNs be endowed with inductive biases through observation as means to provide insights into quantum phenomena? In this work, this question is addressed by investigating possible approximations for reconstructing the Hamiltonian of a quantum system in an unsupervised manner by using only limited information obtained from the system's probability distribution.

View on arXiv
Comments on this paper