ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.12695
11
49

Lessons Learned from Designing an AI-Enabled Diagnosis Tool for Pathologists

23 June 2020
H. Gu
Jingbin Huang
Lauren Hung
Xiang Ánthony' Chen
ArXivPDFHTML
Abstract

Despite the promises of data-driven artificial intelligence (AI), little is known about how we can bridge the gulf between traditional physician-driven diagnosis and a plausible future of medicine automated by AI. Specifically, how can we involve AI usefully in physicians' diagnosis workflow given that most AI is still nascent and error-prone (e.g., in digital pathology)? To explore this question, we first propose a series of collaborative techniques to engage human pathologists with AI given AI's capabilities and limitations, based on which we prototype Impetus - a tool where an AI takes various degrees of initiatives to provide various forms of assistance to a pathologist in detecting tumors from histological slides. We summarize observations and lessons learned from a study with eight pathologists and discuss recommendations for future work on human-centered medical AI systems.

View on arXiv
Comments on this paper