12
7

Gromov-Wasserstein Distance based Object Matching: Asymptotic Inference

Abstract

In this paper, we aim to provide a statistical theory for object matching based on the Gromov-Wasserstein distance. To this end, we model general objects as metric measure spaces. Based on this, we propose a simple and efficiently computable asymptotic statistical test for pose invariant object discrimination. This is based on an empirical version of a β\beta-trimmed lower bound of the Gromov-Wasserstein distance. We derive for β[0,1/2)\beta\in[0,1/2) distributional limits of this test statistic. To this end, we introduce a novel UU-type process indexed in β\beta and show its weak convergence. Finally, the theory developed is investigated in Monte Carlo simulations and applied to structural protein comparisons.

View on arXiv
Comments on this paper