ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.11880
6
101

A Survey on Machine Reading Comprehension: Tasks, Evaluation Metrics and Benchmark Datasets

21 June 2020
Chengchang Zeng
Shaobo Li
Qin Li
Jie Hu
Jianjun Hu
ArXivPDFHTML
Abstract

Machine Reading Comprehension (MRC) is a challenging Natural Language Processing(NLP) research field with wide real-world applications. The great progress of this field in recent years is mainly due to the emergence of large-scale datasets and deep learning. At present, a lot of MRC models have already surpassed human performance on various benchmark datasets despite the obvious giant gap between existing MRC models and genuine human-level reading comprehension. This shows the need for improving existing datasets, evaluation metrics, and models to move current MRC models toward "real" understanding. To address the current lack of comprehensive survey of existing MRC tasks, evaluation metrics, and datasets, herein, (1) we analyze 57 MRC tasks and datasets and propose a more precise classification method of MRC tasks with 4 different attributes; (2) we summarized 9 evaluation metrics of MRC tasks, 7 attributes and 10 characteristics of MRC datasets; (3) We also discuss key open issues in MRC research and highlighted future research directions. In addition, we have collected, organized, and published our data on the companion website(https://mrc-datasets.github.io/) where MRC researchers could directly access each MRC dataset, papers, baseline projects, and the leaderboard.

View on arXiv
Comments on this paper