ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.11446
27
42

MALOnt: An Ontology for Malware Threat Intelligence

20 June 2020
Nidhi Rastogi
Sharmishtha Dutta
Mohammed J Zaki
Alex Gittens
Charu C. Aggarwal
ArXivPDFHTML
Abstract

Malware threat intelligence uncovers deep information about malware, threat actors, and their tactics, Indicators of Compromise(IoC), and vulnerabilities in different platforms from scattered threat sources. This collective information can guide decision making in cyber defense applications utilized by security operation centers(SoCs). In this paper, we introduce an open-source malware ontology - MALOnt that allows the structured extraction of information and knowledge graph generation, especially for threat intelligence. The knowledge graph that uses MALOnt is instantiated from a corpus comprising hundreds of annotated malware threat reports. The knowledge graph enables the analysis, detection, classification, and attribution of cyber threats caused by malware. We also demonstrate the annotation process using MALOnt on exemplar threat intelligence reports. A work in progress, this research is part of a larger effort towards auto-generation of knowledge graphs (KGs)for gathering malware threat intelligence from heterogeneous online resources.

View on arXiv
Comments on this paper