ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.10930
6
74

Joint Speaker Counting, Speech Recognition, and Speaker Identification for Overlapped Speech of Any Number of Speakers

19 June 2020
Naoyuki Kanda
Yashesh Gaur
Xiaofei Wang
Zhong Meng
Zhuo Chen
Tianyan Zhou
Takuya Yoshioka
ArXivPDFHTML
Abstract

We propose an end-to-end speaker-attributed automatic speech recognition model that unifies speaker counting, speech recognition, and speaker identification on monaural overlapped speech. Our model is built on serialized output training (SOT) with attention-based encoder-decoder, a recently proposed method for recognizing overlapped speech comprising an arbitrary number of speakers. We extend SOT by introducing a speaker inventory as an auxiliary input to produce speaker labels as well as multi-speaker transcriptions. All model parameters are optimized by speaker-attributed maximum mutual information criterion, which represents a joint probability for overlapped speech recognition and speaker identification. Experiments on LibriSpeech corpus show that our proposed method achieves significantly better speaker-attributed word error rate than the baseline that separately performs overlapped speech recognition and speaker identification.

View on arXiv
Comments on this paper