49
3
v1v2 (latest)

Gradient Descent in RKHS with Importance Labeling

Abstract

Labeling cost is often expensive and is a fundamental limitation of supervised learning. In this paper, we study importance labeling problem, in which we are given many unlabeled data and select a limited number of data to be labeled from the unlabeled data, and then a learning algorithm is executed on the selected one. We propose a new importance labeling scheme that can effectively select an informative subset of unlabeled data in least squares regression in Reproducing Kernel Hilbert Spaces (RKHS). We analyze the generalization error of gradient descent combined with our labeling scheme and show that the proposed algorithm achieves the optimal rate of convergence in much wider settings and especially gives much better generalization ability in a small label noise setting than the usual uniform sampling scheme. Numerical experiments verify our theoretical findings.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.