ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.10619
20
5
v1v2 (latest)

Tensor Decompositions in Recursive Neural Networks for Tree-Structured Data

18 June 2020
Daniele Castellana
D. Bacciu
ArXiv (abs)PDFHTML
Abstract

The paper introduces two new aggregation functions to encode structural knowledge from tree-structured data. They leverage the Canonical and Tensor-Train decompositions to yield expressive context aggregation while limiting the number of model parameters. Finally, we define two novel neural recursive models for trees leveraging such aggregation functions, and we test them on two tree classification tasks, showing the advantage of proposed models when tree outdegree increases.

View on arXiv
Comments on this paper