ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.10293
13
7

GAT-GMM: Generative Adversarial Training for Gaussian Mixture Models

18 June 2020
Farzan Farnia
William Wang
Subhro Das
Ali Jadbabaie
    GAN
ArXivPDFHTML
Abstract

Generative adversarial networks (GANs) learn the distribution of observed samples through a zero-sum game between two machine players, a generator and a discriminator. While GANs achieve great success in learning the complex distribution of image, sound, and text data, they perform suboptimally in learning multi-modal distribution-learning benchmarks including Gaussian mixture models (GMMs). In this paper, we propose Generative Adversarial Training for Gaussian Mixture Models (GAT-GMM), a minimax GAN framework for learning GMMs. Motivated by optimal transport theory, we design the zero-sum game in GAT-GMM using a random linear generator and a softmax-based quadratic discriminator architecture, which leads to a non-convex concave minimax optimization problem. We show that a Gradient Descent Ascent (GDA) method converges to an approximate stationary minimax point of the GAT-GMM optimization problem. In the benchmark case of a mixture of two symmetric, well-separated Gaussians, we further show this stationary point recovers the true parameters of the underlying GMM. We numerically support our theoretical findings by performing several experiments, which demonstrate that GAT-GMM can perform as well as the expectation-maximization algorithm in learning mixtures of two Gaussians.

View on arXiv
Comments on this paper