ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.07869
83
233
v1v2v3v4 (latest)

Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in Cooperative Tasks

14 June 2020
Georgios Papoudakis
Filippos Christianos
Lukas Schafer
Stefano V. Albrecht
    OffRL
ArXiv (abs)PDFHTML
Abstract

Multi-agent deep reinforcement learning (MARL) suffers from a lack of commonly-used evaluation tasks and criteria, making comparisons between approaches difficult. In this work, we consistently evaluate and compare three different classes of MARL algorithms (independent learning, centralised multi-agent policy gradient, value decomposition) in a diverse range of cooperative multi-agent learning tasks. Our experiments serve as a reference for the expected performance of algorithms across different learning tasks, and we provide insights regarding the effectiveness of different learning approaches. We open-source EPyMARL, which extends the PyMARL codebase~\citep{samvelyan19smac} to include additional algorithms and allow for flexible configuration of algorithm implementation details such as parameter sharing. Finally, we open-source two environments for multi-agent research which focus on coordination under sparse rewards.

View on arXiv
Comments on this paper