ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.07520
6
3

Temporal Fusion Network for Temporal Action Localization:Submission to ActivityNet Challenge 2020 (Task E)

13 June 2020
Zhiwu Qing
Xiang Wang
Yongpeng Sang
Changxin Gao
Shiwei Zhang
Nong Sang
ArXivPDFHTML
Abstract

This technical report analyzes a temporal action localization method we used in the HACS competition which is hosted in Activitynet Challenge 2020.The goal of our task is to locate the start time and end time of the action in the untrimmed video, and predict action category.Firstly, we utilize the video-level feature information to train multiple video-level action classification models. In this way, we can get the category of action in the video.Secondly, we focus on generating high quality temporal proposals.For this purpose, we apply BMN to generate a large number of proposals to obtain high recall rates. We then refine these proposals by employing a cascade structure network called Refine Network, which can predict position offset and new IOU under the supervision of ground truth.To make the proposals more accurate, we use bidirectional LSTM, Nonlocal and Transformer to capture temporal relationships between local features of each proposal and global features of the video data.Finally, by fusing the results of multiple models, our method obtains 40.55% on the validation set and 40.53% on the test set in terms of mAP, and achieves Rank 1 in this challenge.

View on arXiv
Comments on this paper