ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.05014
16
10

HausaMT v1.0: Towards English-Hausa Neural Machine Translation

9 June 2020
Adewale Akinfaderin
ArXivPDFHTML
Abstract

Neural Machine Translation (NMT) for low-resource languages suffers from low performance because of the lack of large amounts of parallel data and language diversity. To contribute to ameliorating this problem, we built a baseline model for English-Hausa machine translation, which is considered a task for low-resource language. The Hausa language is the second largest Afro-Asiatic language in the world after Arabic and it is the third largest language for trading across a larger swath of West Africa countries, after English and French. In this paper, we curated different datasets containing Hausa-English parallel corpus for our translation. We trained baseline models and evaluated the performance of our models using the Recurrent and Transformer encoder-decoder architecture with two tokenization approaches: standard word-level tokenization and Byte Pair Encoding (BPE) subword tokenization.

View on arXiv
Comments on this paper