ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.04323
6
0

Ensemble Model with Batch Spectral Regularization and Data Blending for Cross-Domain Few-Shot Learning with Unlabeled Data

8 June 2020
Zhen Zhao
Bingyu Liu
Yuhong Guo
Jieping Ye
ArXivPDFHTML
Abstract

In this paper, we present our proposed ensemble model with batch spectral regularization and data blending mechanisms for the Track 2 problem of the cross-domain few-shot learning (CD-FSL) challenge. We build a multi-branch ensemble framework by using diverse feature transformation matrices, while deploying batch spectral feature regularization on each branch to improve the model's transferability. Moreover, we propose a data blending method to exploit the unlabeled data and augment the sparse support set in the target domain. Our proposed model demonstrates effective performance on the CD-FSL benchmark tasks.

View on arXiv
Comments on this paper