ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.04105
26
43
v1v2 (latest)

Kafka-ML: connecting the data stream with ML/AI frameworks

7 June 2020
Cristian Martín
Peter Langendoerfer
Pouya Soltani Zarrin
M. Díaz
ArXiv (abs)PDFHTML
Abstract

Machine Learning (ML) and Artificial Intelligence (AI) have a dependency on data sources to train, improve and make predictions through their algorithms. With the digital revolution and current paradigms like the Internet of Things, this information is turning from static data into continuous data streams. However, most of the ML/AI frameworks used nowadays are not fully prepared for this revolution. In this paper, we proposed Kafka-ML, an open-source framework that enables the management of TensorFlow ML/AI pipelines through data streams (Apache Kafka). Kafka-ML provides an accessible and user-friendly Web UI where users can easily define ML models, to then train, evaluate and deploy them for inference. Kafka-ML itself and its deployed components are fully managed through containerization technologies, which ensure its portability and easy distribution and other features such as fault-tolerance and high availability. Finally, a novel approach has been introduced to manage and reuse data streams, which may lead to the (no) utilization of data storage and file systems.

View on arXiv
Comments on this paper