ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.03465
6
16

Visual Transfer for Reinforcement Learning via Wasserstein Domain Confusion

4 June 2020
Josh Roy
G. Konidaris
ArXivPDFHTML
Abstract

We introduce Wasserstein Adversarial Proximal Policy Optimization (WAPPO), a novel algorithm for visual transfer in Reinforcement Learning that explicitly learns to align the distributions of extracted features between a source and target task. WAPPO approximates and minimizes the Wasserstein-1 distance between the distributions of features from source and target domains via a novel Wasserstein Confusion objective. WAPPO outperforms the prior state-of-the-art in visual transfer and successfully transfers policies across Visual Cartpole and two instantiations of 16 OpenAI Procgen environments.

View on arXiv
Comments on this paper