ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.01713
19
35

SAN-M: Memory Equipped Self-Attention for End-to-End Speech Recognition

21 May 2020
Zhifu Gao
Shiliang Zhang
Ming Lei
Ian Mcloughlin
ArXivPDFHTML
Abstract

End-to-end speech recognition has become popular in recent years, since it can integrate the acoustic, pronunciation and language models into a single neural network. Among end-to-end approaches, attention-based methods have emerged as being superior. For example, Transformer, which adopts an encoder-decoder architecture. The key improvement introduced by Transformer is the utilization of self-attention instead of recurrent mechanisms, enabling both encoder and decoder to capture long-range dependencies with lower computational complexity.In this work, we propose boosting the self-attention ability with a DFSMN memory block, forming the proposed memory equipped self-attention (SAN-M) mechanism. Theoretical and empirical comparisons have been made to demonstrate the relevancy and complementarity between self-attention and the DFSMN memory block. Furthermore, the proposed SAN-M provides an efficient mechanism to integrate these two modules. We have evaluated our approach on the public AISHELL-1 benchmark and an industrial-level 20,000-hour Mandarin speech recognition task. On both tasks, SAN-M systems achieved much better performance than the self-attention based Transformer baseline system. Specially, it can achieve a CER of 6.46% on the AISHELL-1 task even without using any external LM, comfortably outperforming other state-of-the-art systems.

View on arXiv
Comments on this paper