ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.00997
13
1

Temporal-Differential Learning in Continuous Environments

1 June 2020
T. Bian
Zhong-Ping Jiang
    CLLOffRL
ArXiv (abs)PDFHTML
Abstract

In this paper, a new reinforcement learning (RL) method known as the method of temporal differential is introduced. Compared to the traditional temporal-difference learning method, it plays a crucial role in developing novel RL techniques for continuous environments. In particular, the continuous-time least squares policy evaluation (CT-LSPE) and the continuous-time temporal-differential (CT-TD) learning methods are developed. Both theoretical and empirical evidences are provided to demonstrate the effectiveness of the proposed temporal-differential learning methodology.

View on arXiv
Comments on this paper