ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.00609
31
4

CNRL at SemEval-2020 Task 5: Modelling Causal Reasoning in Language with Multi-Head Self-Attention Weights based Counterfactual Detection

31 May 2020
Rajaswa Patil
V. Baths
ArXiv (abs)PDFHTML
Abstract

In this paper, we describe an approach for modelling causal reasoning in natural language by detecting counterfactuals in text using multi-head self-attention weights. We use pre-trained transformer models to extract contextual embeddings and self-attention weights from the text. We show the use of convolutional layers to extract task-specific features from these self-attention weights. Further, we describe a fine-tuning approach with a common base model for knowledge sharing between the two closely related sub-tasks for counterfactual detection. We analyze and compare the performance of various transformer models in our experiments. Finally, we perform a qualitative analysis with the multi-head self-attention weights to interpret our models' dynamics.

View on arXiv
Comments on this paper