As an alternative sensing paradigm, dynamic vision sensors (DVS) have been recently explored to tackle scenarios where conventional sensors result in high data rate and processing time. This paper presents a hybrid event-frame approach for detecting and tracking objects recorded by a stationary neuromorphic sensor, thereby exploiting the sparse DVS output in a low-power setting for traffic monitoring. Specifically, we propose a hardware efficient processing pipeline that optimizes memory and computational needs that enable long-term battery powered usage for IoT applications. To exploit the background removal property of a static DVS, we propose an event-based binary image creation that signals presence or absence of events in a frame duration. This reduces memory requirement and enables usage of simple algorithms like median filtering and connected component labeling for denoise and region proposal respectively. To overcome the fragmentation issue, a YOLO inspired neural network based detector and classifier to merge fragmented region proposals has been proposed. Finally, a new overlap based tracker was implemented, exploiting overlap between detections and tracks is proposed with heuristics to overcome occlusion. The proposed pipeline is evaluated with more than 5 hours of traffic recording spanning three different locations on two different neuromorphic sensors (DVS and CeleX) and demonstrate similar performance. Compared to existing event-based feature trackers, our method provides similar accuracy while needing approx 6 times less computes. To the best of our knowledge, this is the first time a stationary DVS based traffic monitoring solution is extensively compared to simultaneously recorded RGB frame-based methods while showing tremendous promise by outperforming state-of-the-art deep learning solutions.
View on arXiv