ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.13039
15
10

ALBA : Reinforcement Learning for Video Object Segmentation

26 May 2020
Shreyank N. Gowda
Panagiotis Eustratiadis
Timothy M. Hospedales
Laura Sevilla-Lara
    VOS
ArXivPDFHTML
Abstract

We consider the challenging problem of zero-shot video object segmentation (VOS). That is, segmenting and tracking multiple moving objects within a video fully automatically, without any manual initialization. We treat this as a grouping problem by exploiting object proposals and making a joint inference about grouping over both space and time. We propose a network architecture for tractably performing proposal selection and joint grouping. Crucially, we then show how to train this network with reinforcement learning so that it learns to perform the optimal non-myopic sequence of grouping decisions to segment the whole video. Unlike standard supervised techniques, this also enables us to directly optimize for the non-differentiable overlap-based metrics used to evaluate VOS. We show that the proposed method, which we call ALBA outperforms the previous stateof-the-art on three benchmarks: DAVIS 2017 [2], FBMS [20] and Youtube-VOS [27].

View on arXiv
Comments on this paper