ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.12533
14
3

Guiding Symbolic Natural Language Grammar Induction via Transformer-Based Sequence Probabilities

26 May 2020
B. Goertzel
Andres Suarez Madrigal
Gino Yu
ArXivPDFHTML
Abstract

A novel approach to automated learning of syntactic rules governing natural languages is proposed, based on using probabilities assigned to sentences (and potentially longer word sequences) by transformer neural network language models to guide symbolic learning processes like clustering and rule induction. This method exploits the learned linguistic knowledge in transformers, without any reference to their inner representations; hence, the technique is readily adaptable to the continuous appearance of more powerful language models. We show a proof-of-concept example of our proposed technique, using it to guide unsupervised symbolic link-grammar induction methods drawn from our prior research.

View on arXiv
Comments on this paper