ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.11498
15
38

Pythia: Grammar-Based Fuzzing of REST APIs with Coverage-guided Feedback and Learning-based Mutations

23 May 2020
Vaggelis Atlidakis
Roxana Geambasu
Patrice Godefroid
Marina Polishchuk
Baishakhi Ray
ArXivPDFHTML
Abstract

This paper introduces Pythia, the first fuzzer that augments grammar-based fuzzing with coverage-guided feedback and a learning-based mutation strategy for stateful REST API fuzzing. Pythia uses a statistical model to learn common usage patterns of a target REST API from structurally valid seed inputs. It then generates learning-based mutations by injecting a small amount of noise deviating from common usage patterns while still maintaining syntactic validity. Pythia's mutation strategy helps generate grammatically valid test cases and coverage-guided feedback helps prioritize the test cases that are more likely to find bugs. We present experimental evaluation on three production-scale, open-source cloud services showing that Pythia outperforms prior approaches both in code coverage and new bugs found. Using Pythia, we found 29 new bugs which we are in the process of reporting to the respective service owners.

View on arXiv
Comments on this paper