ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.11467
12
20

Joint Training Capsule Network for Cold Start Recommendation

23 May 2020
Tingting Liang
Congying Xia
Yuyu Yin
Philip S. Yu
ArXivPDFHTML
Abstract

This paper proposes a novel neural network, joint training capsule network (JTCN), for the cold start recommendation task. We propose to mimic the high-level user preference other than the raw interaction history based on the side information for the fresh users. Specifically, an attentive capsule layer is proposed to aggregate high-level user preference from the low-level interaction history via a dynamic routing-by-agreement mechanism. Moreover, JTCN jointly trains the loss for mimicking the user preference and the softmax loss for the recommendation together in an end-to-end manner. Experiments on two publicly available datasets demonstrate the effectiveness of the proposed model. JTCN improves other state-of-the-art methods at least 7.07% for CiteULike and 16.85% for Amazon in terms of Recall@100 in cold start recommendation.

View on arXiv
Comments on this paper