ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.10985
6
2

Apply VGGNet-based deep learning model of vibration data for prediction model of gravity acceleration equipment

22 May 2020
Seonwoo Lee
Y. Tak
HoJun Yang
JaeHeung Yang
Gang-Min Lim
Kyusung Kim
Byeong-Keun Choi
Jangwoo Kwon
ArXivPDFHTML
Abstract

Hypergravity accelerators are a type of large machinery used for gravity training or medical research. A failure of such large equipment can be a serious problem in terms of safety or costs. This paper proposes a prediction model that can proactively prevent failures that may occur in a hypergravity accelerator. The method proposed in this paper was to convert vibration signals to spectograms and perform classification training using a deep learning model. An experiment was conducted to evaluate the performance of the method proposed in this paper. A 4-channel accelerometer was attached to the bearing housing, which is a rotor, and time-amplitude data were obtained from the measured values by sampling. The data were converted to a two-dimensional spectrogram, and classification training was performed using a deep learning model for four conditions of the equipment: Unbalance, Misalignment, Shaft Rubbing, and Normal. The experimental results showed that the proposed method had a 99.5% F1-Score, which was up to 23% higher than the 76.25% for existing feature-based learning models.

View on arXiv
Comments on this paper