ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.10956
11
1

NagE: Non-Abelian Group Embedding for Knowledge Graphs

22 May 2020
Tong Yang
Long Sha
Pengyu Hong
ArXivPDFHTML
Abstract

We demonstrated the existence of a group algebraic structure hidden in relational knowledge embedding problems, which suggests that a group-based embedding framework is essential for designing embedding models. Our theoretical analysis explores merely the intrinsic property of the embedding problem itself hence is model-independent. Motivated by the theoretical analysis, we have proposed a group theory-based knowledge graph embedding framework, in which relations are embedded as group elements, and entities are represented by vectors in group action spaces. We provide a generic recipe to construct embedding models associated with two instantiating examples: SO3E and SU2E, both of which apply a continuous non-Abelian group as the relation embedding. Empirical experiments using these two exampling models have shown state-of-the-art results on benchmark datasets.

View on arXiv
Comments on this paper