ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.10360
32
17

VideoForensicsHQ: Detecting High-quality Manipulated Face Videos

20 May 2020
Gereon Fox
Wentao Liu
Hyeongwoo Kim
Hans-Peter Seidel
Mohamed A. Elgharib
Christian Theobalt
    CVBM
ArXivPDFHTML
Abstract

There are concerns that new approaches to the synthesis of high quality face videos may be misused to manipulate videos with malicious intent. The research community therefore developed methods for the detection of modified footage and assembled benchmark datasets for this task. In this paper, we examine how the performance of forgery detectors depends on the presence of artefacts that the human eye can see. We introduce a new benchmark dataset for face video forgery detection, of unprecedented quality. It allows us to demonstrate that existing detection techniques have difficulties detecting fakes that reliably fool the human eye. We thus introduce a new family of detectors that examine combinations of spatial and temporal features and outperform existing approaches both in terms of detection accuracy and generalization.

View on arXiv
Comments on this paper