ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.09800
7
45

Fingerprinting Encrypted Voice Traffic on Smart Speakers with Deep Learning

20 May 2020
Chenggang Wang
Sean Kennedy
Haipeng Li
King Hudson
G. Atluri
Xuetao Wei
Wenhai Sun
Boyang Wang
ArXivPDFHTML
Abstract

This paper investigates the privacy leakage of smart speakers under an encrypted traffic analysis attack, referred to as voice command fingerprinting. In this attack, an adversary can eavesdrop both outgoing and incoming encrypted voice traffic of a smart speaker, and infers which voice command a user says over encrypted traffic. We first built an automatic voice traffic collection tool and collected two large-scale datasets on two smart speakers, Amazon Echo and Google Home. Then, we implemented proof-of-concept attacks by leveraging deep learning. Our experimental results over the two datasets indicate disturbing privacy concerns. Specifically, compared to 1% accuracy with random guess, our attacks can correctly infer voice commands over encrypted traffic with 92.89\% accuracy on Amazon Echo. Despite variances that human voices may cause on outgoing traffic, our proof-of-concept attacks remain effective even only leveraging incoming traffic (i.e., the traffic from the server). This is because the AI-based voice services running on the server side response commands in the same voice and with a deterministic or predictable manner in text, which leaves distinguishable pattern over encrypted traffic. We also built a proof-of-concept defense to obfuscate encrypted traffic. Our results show that the defense can effectively mitigate attack accuracy on Amazon Echo to 32.18%.

View on arXiv
Comments on this paper