ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.09531
22
22

Ultrasound Video Summarization using Deep Reinforcement Learning

19 May 2020
Tianrui Liu
Qingjie Meng
Athanasios Vlontzos
Jeremy Tan
Daniel Rueckert
Bernhard Kainz
    OffRL
ArXivPDFHTML
Abstract

Video is an essential imaging modality for diagnostics, e.g. in ultrasound imaging, for endoscopy, or movement assessment. However, video hasn't received a lot of attention in the medical image analysis community. In the clinical practice, it is challenging to utilise raw diagnostic video data efficiently as video data takes a long time to process, annotate or audit. In this paper we introduce a novel, fully automatic video summarization method that is tailored to the needs of medical video data. Our approach is framed as reinforcement learning problem and produces agents focusing on the preservation of important diagnostic information. We evaluate our method on videos from fetal ultrasound screening, where commonly only a small amount of the recorded data is used diagnostically. We show that our method is superior to alternative video summarization methods and that it preserves essential information required by clinical diagnostic standards.

View on arXiv
Comments on this paper