ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.09406
16
4

Embeddings as representation for symbolic music

19 May 2020
Sebastian Garcia-Valencia
ArXiv (abs)PDFHTML
Abstract

A representation technique that allows encoding music in a way that contains musical meaning would improve the results of any model trained for computer music tasks like generation of melodies and harmonies of better quality. The field of natural language processing has done a lot of work in finding a way to capture the semantic meaning of words and sentences, and word embeddings have successfully shown the capabilities for such a task. In this paper, we experiment with embeddings to represent musical notes from 3 different variations of a dataset and analyze if the model can capture useful musical patterns. To do this, the resulting embeddings are visualized in projections using the t-SNE technique.

View on arXiv
Comments on this paper