46
4

Attention-based Transducer for Online Speech Recognition

Abstract

Recent studies reveal the potential of recurrent neural network transducer (RNN-T) for end-to-end (E2E) speech recognition. Among some most popular E2E systems including RNN-T, Attention Encoder-Decoder (AED), and Connectionist Temporal Classification (CTC), RNN-T has some clear advantages given that it supports streaming recognition and does not have frame-independency assumption. Although significant progresses have been made for RNN-T research, it is still facing performance challenges in terms of training speed and accuracy. We propose attention-based transducer with modification over RNN-T in two aspects. First, we introduce chunk-wise attention in the joint network. Second, self-attention is introduced in the encoder. Our proposed model outperforms RNN-T for both training speed and accuracy. For training, we achieves over 1.7x speedup. With 500 hours LAIX non-native English training data, attention-based transducer yields ~10.6% WER reduction over baseline RNN-T. Trained with full set of over 10K hours data, our final system achieves ~5.5% WER reduction over that trained with the best Kaldi TDNN-f recipe. After 8-bit weight quantization without WER degradation, RTF and latency drop to 0.34~0.36 and 268~409 milliseconds respectively on a single CPU core of a production server.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.