While humans and animals learn incrementally during their lifetimes and exploit their experience to solve new tasks, standard deep reinforcement learning methods specialize to solve only one task at a time. As a result, the information they acquire is hardly reusable in new situations. Here, we introduce a new perspective on the problem of leveraging prior knowledge to solve future tasks. We show that learning discrete representations of sensory inputs can provide a high-level abstraction that is common across multiple tasks, thus facilitating the transference of information. In particular, we show that it is possible to learn such representations by self-supervision, following an information theoretic approach. Our method is able to learn concepts in locomotive and optimal control tasks that increase the sample efficiency in both known and unknown tasks, opening a new path to endow artificial agents with generalization abilities.
View on arXiv