ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.07815
11
8

ConVoice: Real-Time Zero-Shot Voice Style Transfer with Convolutional Network

15 May 2020
Yurii Rebryk
Stanislav Beliaev
ArXivPDFHTML
Abstract

We propose a neural network for zero-shot voice conversion (VC) without any parallel or transcribed data. Our approach uses pre-trained models for automatic speech recognition (ASR) and speaker embedding, obtained from a speaker verification task. Our model is fully convolutional and non-autoregressive except for a small pre-trained recurrent neural network for speaker encoding. ConVoice can convert speech of any length without compromising quality due to its convolutional architecture. Our model has comparable quality to similar state-of-the-art models while being extremely fast.

View on arXiv
Comments on this paper