ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.05294
13
12

Ring Reservoir Neural Networks for Graphs

11 May 2020
Claudio Gallicchio
Alessio Micheli
    GNN
ArXivPDFHTML
Abstract

Machine Learning for graphs is nowadays a research topic of consolidated relevance. Common approaches in the field typically resort to complex deep neural network architectures and demanding training algorithms, highlighting the need for more efficient solutions. The class of Reservoir Computing (RC) models can play an important role in this context, enabling to develop fruitful graph embeddings through untrained recursive architectures. In this paper, we study progressive simplifications to the design strategy of RC neural networks for graphs. Our core proposal is based on shaping the organization of the hidden neurons to follow a ring topology. Experimental results on graph classification tasks indicate that ring-reservoirs architectures enable particularly effective network configurations, showing consistent advantages in terms of predictive performance.

View on arXiv
Comments on this paper