ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.04690
22
56

Non-Autoregressive Image Captioning with Counterfactuals-Critical Multi-Agent Learning

10 May 2020
Longteng Guo
Jing Liu
Xinxin Zhu
Xingjian He
Jie Jiang
Hanqing Lu
    BDL
ArXivPDFHTML
Abstract

Most image captioning models are autoregressive, i.e. they generate each word by conditioning on previously generated words, which leads to heavy latency during inference. Recently, non-autoregressive decoding has been proposed in machine translation to speed up the inference time by generating all words in parallel. Typically, these models use the word-level cross-entropy loss to optimize each word independently. However, such a learning process fails to consider the sentence-level consistency, thus resulting in inferior generation quality of these non-autoregressive models. In this paper, we propose a Non-Autoregressive Image Captioning (NAIC) model with a novel training paradigm: Counterfactuals-critical Multi-Agent Learning (CMAL). CMAL formulates NAIC as a multi-agent reinforcement learning system where positions in the target sequence are viewed as agents that learn to cooperatively maximize a sentence-level reward. Besides, we propose to utilize massive unlabeled images to boost captioning performance. Extensive experiments on MSCOCO image captioning benchmark show that our NAIC model achieves a performance comparable to state-of-the-art autoregressive models, while brings 13.9x decoding speedup.

View on arXiv
Comments on this paper