ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.03687
17
21

COBRA: Contrastive Bi-Modal Representation Algorithm

7 May 2020
Vishaal Udandarao
A. Maiti
Deepak Srivatsav
Suryatej Reddy Vyalla
Yifang Yin
R. Shah
ArXivPDFHTML
Abstract

There are a wide range of applications that involve multi-modal data, such as cross-modal retrieval, visual question-answering, and image captioning. Such applications are primarily dependent on aligned distributions of the different constituent modalities. Existing approaches generate latent embeddings for each modality in a joint fashion by representing them in a common manifold. However these joint embedding spaces fail to sufficiently reduce the modality gap, which affects the performance in downstream tasks. We hypothesize that these embeddings retain the intra-class relationships but are unable to preserve the inter-class dynamics. In this paper, we present a novel framework COBRA that aims to train two modalities (image and text) in a joint fashion inspired by the Contrastive Predictive Coding (CPC) and Noise Contrastive Estimation (NCE) paradigms which preserve both inter and intra-class relationships. We empirically show that this framework reduces the modality gap significantly and generates a robust and task agnostic joint-embedding space. We outperform existing work on four diverse downstream tasks spanning across seven benchmark cross-modal datasets.

View on arXiv
Comments on this paper