ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.02157
14
6

Stereotype-Free Classification of Fictitious Faces

29 April 2020
Mohammadhossein Toutiaee
Soheyla Amirian
John A. Miller
Sheng Li
    CVBM
ArXivPDFHTML
Abstract

Equal Opportunity and Fairness are receiving increasing attention in artificial intelligence. Stereotyping is another source of discrimination, which yet has been unstudied in literature. GAN-made faces would be exposed to such discrimination, if they are classified by human perception. It is possible to eliminate the human impact on fictitious faces classification task by the use of statistical approaches. We present a novel approach through penalized regression to label stereotype-free GAN-generated synthetic unlabeled images. The proposed approach aids labeling new data (fictitious output images) by minimizing a penalized version of the least squares cost function between realistic pictures and target pictures.

View on arXiv
Comments on this paper