ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.01319
14
28

Formal Policy Synthesis for Continuous-Space Systems via Reinforcement Learning

4 May 2020
M. Kazemi
Sadegh Soudjani
ArXivPDFHTML
Abstract

This paper studies satisfaction of temporal properties on unknown stochastic processes that have continuous state spaces. We show how reinforcement learning (RL) can be applied for computing policies that are finite-memory and deterministic using only the paths of the stochastic process. We address properties expressed in linear temporal logic (LTL) and use their automaton representation to give a path-dependent reward function maximised via the RL algorithm. We develop the required assumptions and theories for the convergence of the learned policy to the optimal policy in the continuous state space. To improve the performance of the learning on the constructed sparse reward function, we propose a sequential learning procedure based on a sequence of labelling functions obtained from the positive normal form of the LTL specification. We use this procedure to guide the RL algorithm towards a policy that converges to an optimal policy under suitable assumptions on the process. We demonstrate the approach on a 4-dim cart-pole system and 6-dim boat driving problem.

View on arXiv
Comments on this paper