ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.00792
11
36

ForecastQA: A Question Answering Challenge for Event Forecasting with Temporal Text Data

2 May 2020
Woojeong Jin
Rahul Khanna
Suji Kim
Dong-Ho Lee
Fred Morstatter
Aram Galstyan
Xiang Ren
    AI4TS
ArXivPDFHTML
Abstract

Event forecasting is a challenging, yet important task, as humans seek to constantly plan for the future. Existing automated forecasting studies rely mostly on structured data, such as time-series or event-based knowledge graphs, to help predict future events. In this work, we aim to formulate a task, construct a dataset, and provide benchmarks for developing methods for event forecasting with large volumes of unstructured text data. To simulate the forecasting scenario on temporal news documents, we formulate the problem as a restricted-domain, multiple-choice, question-answering (QA) task. Unlike existing QA tasks, our task limits accessible information, and thus a model has to make a forecasting judgement. To showcase the usefulness of this task formulation, we introduce ForecastQA, a question-answering dataset consisting of 10,392 event forecasting questions, which have been collected and verified via crowdsourcing efforts. We present our experiments on ForecastQA using BERT-based models and find that our best model achieves 60.1% accuracy on the dataset, which still lags behind human performance by about 19%. We hope ForecastQA will support future research efforts in bridging this gap.

View on arXiv
Comments on this paper