ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.00316
11
63

Self-supervised Knowledge Triplet Learning for Zero-shot Question Answering

1 May 2020
Pratyay Banerjee
Chitta Baral
ArXivPDFHTML
Abstract

The aim of all Question Answering (QA) systems is to be able to generalize to unseen questions. Current supervised methods are reliant on expensive data annotation. Moreover, such annotations can introduce unintended annotator bias which makes systems focus more on the bias than the actual task. In this work, we propose Knowledge Triplet Learning (KTL), a self-supervised task over knowledge graphs. We propose heuristics to create synthetic graphs for commonsense and scientific knowledge. We propose methods of how to use KTL to perform zero-shot QA and our experiments show considerable improvements over large pre-trained transformer models.

View on arXiv
Comments on this paper