ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.14705
23
81
v1v2 (latest)

Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation

30 April 2020
Yuheng Jia
Hui Liu
Junhui Hou
Sam Kwong
Qingfu Zhang
ArXiv (abs)PDFHTML
Abstract

This paper explores the problem of multi-view spectral clustering (MVSC) based on tensor low-rank modeling. Unlike the existing methods that all adopt an off-the-shelf tensor low-rank norm without considering the special characteristics of the tensor in MVSC, we design a novel structured tensor low-rank norm tailored to MVSC. Specifically, we explicitly impose a symmetric low-rank constraint and a structured sparse low-rank constraint on the frontal and horizontal slices of the tensor to characterize the intra-view and inter-view relationships, respectively. Moreover, the two constraints could be jointly optimized to achieve mutual refinement. On the basis of the novel tensor low-rank norm, we formulate MVSC as a convex low-rank tensor recovery problem, which is then efficiently solved with an augmented Lagrange multiplier based method iteratively. Extensive experimental results on five benchmark datasets show that the proposed method outperforms state-of-the-art methods to a significant extent. Impressively, our method is able to produce perfect clustering. In addition, the parameters of our method can be easily tuned, and the proposed model is robust to different datasets, demonstrating its potential in practice.

View on arXiv
Comments on this paper