ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.14547
24
17

DSAC: Distributional Soft Actor Critic for Risk-Sensitive Reinforcement Learning

30 April 2020
Xiaoteng Ma
Li Xia
Zhengyuan Zhou
Jun Yang
Qianchuan Zhao
ArXivPDFHTML
Abstract

In this paper, we present a new reinforcement learning (RL) algorithm called Distributional Soft Actor Critic (DSAC), which exploits the distributional information of accumulated rewards to achieve better performance. Seamlessly integrating SAC (which uses entropy to encourage exploration) with a principled distributional view of the underlying objective, DSAC takes into consideration the randomness in both action and rewards, and beats the state-of-the-art baselines in several continuous control benchmarks. Moreover, with the distributional information of rewards, we propose a unified framework for risk-sensitive learning, one that goes beyond maximizing only expected accumulated rewards. Under this framework we discuss three specific risk-related metrics: percentile, mean-variance and distorted expectation. Our extensive experiments demonstrate that with distribution modeling in RL, the agent performs better for both risk-averse and risk-seeking control tasks.

View on arXiv
Comments on this paper