ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.13952
20
25

Data Augmentation for Spoken Language Understanding via Pretrained Language Models

29 April 2020
Baolin Peng
Chenguang Zhu
Michael Zeng
Jianfeng Gao
ArXivPDFHTML
Abstract

The training of spoken language understanding (SLU) models often faces the problem of data scarcity. In this paper, we put forward a data augmentation method using pretrained language models to boost the variability and accuracy of generated utterances. Furthermore, we investigate and propose solutions to two previously overlooked semi-supervised learning scenarios of data scarcity in SLU: i) Rich-in-Ontology: ontology information with numerous valid dialogue acts is given; ii) Rich-in-Utterance: a large number of unlabelled utterances are available. Empirical results show that our method can produce synthetic training data that boosts the performance of language understanding models in various scenarios.

View on arXiv
Comments on this paper