22
4

Evaluating the Rainbow DQN Agent in Hanabi with Unseen Partners

Abstract

Hanabi is a cooperative game that challenges exist-ing AI techniques due to its focus on modeling the mental states ofother players to interpret and predict their behavior. While thereare agents that can achieve near-perfect scores in the game byagreeing on some shared strategy, comparatively little progresshas been made in ad-hoc cooperation settings, where partnersand strategies are not known in advance. In this paper, we showthat agents trained through self-play using the popular RainbowDQN architecture fail to cooperate well with simple rule-basedagents that were not seen during training and, conversely, whenthese agents are trained to play with any individual rule-basedagent, or even a mix of these agents, they fail to achieve goodself-play scores.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.