ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.12399
19
19

Reinforcement Learning Generalization with Surprise Minimization

26 April 2020
Jerry Zikun Chen
    OOD
ArXivPDFHTML
Abstract

Generalization remains a challenging problem for deep reinforcement learning algorithms, which are often trained and tested on the same set of deterministic game environments. When test environments are unseen and perturbed but the nature of the task remains the same, generalization gaps can arise. In this work, we propose and evaluate a surprise minimizing agent on a generalization benchmark to show an additional reward learned from a simple density model can show robustness in procedurally generated game environments that provide constant source of entropy and stochasticity.

View on arXiv
Comments on this paper