ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.11967
8
38

Defining Benchmarks for Continual Few-Shot Learning

15 April 2020
Antreas Antoniou
Massimiliano Patacchiola
Mateusz Ochal
Amos Storkey
ArXivPDFHTML
Abstract

Both few-shot and continual learning have seen substantial progress in the last years due to the introduction of proper benchmarks. That being said, the field has still to frame a suite of benchmarks for the highly desirable setting of continual few-shot learning, where the learner is presented a number of few-shot tasks, one after the other, and then asked to perform well on a validation set stemming from all previously seen tasks. Continual few-shot learning has a small computational footprint and is thus an excellent setting for efficient investigation and experimentation. In this paper we first define a theoretical framework for continual few-shot learning, taking into account recent literature, then we propose a range of flexible benchmarks that unify the evaluation criteria and allows exploring the problem from multiple perspectives. As part of the benchmark, we introduce a compact variant of ImageNet, called SlimageNet64, which retains all original 1000 classes but only contains 200 instances of each one (a total of 200K data-points) downscaled to 64 x 64 pixels. We provide baselines for the proposed benchmarks using a number of popular few-shot learning algorithms, as a result, exposing previously unknown strengths and weaknesses of those algorithms in continual and data-limited settings.

View on arXiv
Comments on this paper