ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.11364
13
339

Single-View View Synthesis with Multiplane Images

23 April 2020
Richard Tucker
Noah Snavely
ArXivPDFHTML
Abstract

A recent strand of work in view synthesis uses deep learning to generate multiplane images (a camera-centric, layered 3D representation) given two or more input images at known viewpoints. We apply this representation to single-view view synthesis, a problem which is more challenging but has potentially much wider application. Our method learns to predict a multiplane image directly from a single image input, and we introduce scale-invariant view synthesis for supervision, enabling us to train on online video. We show this approach is applicable to several different datasets, that it additionally generates reasonable depth maps, and that it learns to fill in content behind the edges of foreground objects in background layers. Project page at https://single-view-mpi.github.io/.

View on arXiv
Comments on this paper