23
158

Recursive Social Behavior Graph for Trajectory Prediction

Abstract

Social interaction is an important topic in human trajectory prediction to generate plausible paths. In this paper, we present a novel insight of group-based social interaction model to explore relationships among pedestrians. We recursively extract social representations supervised by group-based annotations and formulate them into a social behavior graph, called Recursive Social Behavior Graph. Our recursive mechanism explores the representation power largely. Graph Convolutional Neural Network then is used to propagate social interaction information in such a graph. With the guidance of Recursive Social Behavior Graph, we surpass state-of-the-art method on ETH and UCY dataset for 11.1% in ADE and 10.8% in FDE in average, and successfully predict complex social behaviors.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.