ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.10327
25
35

Multi-view Self-Constructing Graph Convolutional Networks with Adaptive Class Weighting Loss for Semantic Segmentation

21 April 2020
Qinghui Liu
Michael C. Kampffmeyer
Robert Jenssen
Arnt-Børre Salberg
    SSL
ArXivPDFHTML
Abstract

We propose a novel architecture called the Multi-view Self-Constructing Graph Convolutional Networks (MSCG-Net) for semantic segmentation. Building on the recently proposed Self-Constructing Graph (SCG) module, which makes use of learnable latent variables to self-construct the underlying graphs directly from the input features without relying on manually built prior knowledge graphs, we leverage multiple views in order to explicitly exploit the rotational invariance in airborne images. We further develop an adaptive class weighting loss to address the class imbalance. We demonstrate the effectiveness and flexibility of the proposed method on the Agriculture-Vision challenge dataset and our model achieves very competitive results (0.547 mIoU) with much fewer parameters and at a lower computational cost compared to related pure-CNN based work. Code will be available at: github.com/samleoqh/MSCG-Net

View on arXiv
Comments on this paper