ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.09679
36
19

MGX: Near-Zero Overhead Memory Protection for Data-Intensive Accelerators

20 April 2020
Weizhe Hua
M. Umar
Zhiru Zhang
G. E. Suh
    GNN
ArXivPDFHTML
Abstract

This paper introduces MGX, a near-zero overhead memory protection scheme for hardware accelerators. MGX minimizes the performance overhead of off-chip memory encryption and integrity verification by exploiting the application-specific properties of the accelerator execution. In particular, accelerators tend to explicitly manage data movement between on-chip and off-chip memories. Therefore, the general memory access pattern of an accelerator can largely be determined for a given application. Exploiting these characteristics, MGX generates version numbers used in memory encryption and integrity verification using on-chip accelerator state rather than storing them in the off-chip memory; it also customizes the granularity of the memory protection to match the granularity used by the accelerator. To demonstrate the efficacy of MGX, we present an in-depth study of MGX for DNN and graph algorithms. Experimental results show that on average, MGX lowers the performance overhead of memory protection from 28% and 33% to 4% and 5% for DNN and graph processing accelerators in a wide range of benchmarks, respectively.

View on arXiv
Comments on this paper